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4000 Liège, Belgium
2College of Marine Science, University of South Florida, 140 7th Avenue South, St.
Petersburg, Florida 33701, USA
3Honorary Research Associate, National Fund for Scientific Research, Belgium

Received: 23 May 2006 – Accepted: 19 June 2006 – Published: 10 July 2006

Correspondence to: J.-M. Beckers (jm.beckers@ulg.ac.be)

735

http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/3/735/2006/osd-3-735-2006-print.pdf
http://www.ocean-sci-discuss.net/3/735/2006/osd-3-735-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


OSD
3, 735–776, 2006

Cloud filling and
error calculations

J.-M. Beckers et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Abstract

We present an extension to the Data INterpolating Empirical Orthogonal Functions
(DINEOF) which allows not only to fill in clouded images but also to provide an es-
timation of the error covariance of the reconstruction. This additional information is
obtained by an analogy with optimal interpolation. It is shown that the error fields can5

be obtained with a clever rearrangement of calculations at a cost comparable to that of
the interpolation itself. The method is presented on the reconstruction of sea-surface
temperature in the Ligurian Sea and around the Corsican Island (Mediterranean Sea),
including the calculation of inter-annual variability of average surface values and their
expected errors. The application shows that the error fields are not only able to reflect10

the data-coverage structure but also the covariances of the physical fields.

1 Introduction

When dealing with a data set containing missing or unreliable data, a general approach
to fill in the missing data is the use of objective-analysis methods, in particular optimal
interpolation (OI), (e.g., von Storch and Zwiers, 1999; Gomis and Pedder, 2005). The15

later leads to an interpolated field with minimal expected error variance, certainly a
desirable property. The optimality of the approach relies however on the assumption
that correlation functions and the signal/noise ratio of the data are be perfectly known
(e.g., Rixen et al., 2000; Gomis et al., 2001). In practise ad hoc parametric correlation
functions are used and parameters in the best case are only calibrated for the specific20

data set, so that optimality in the statistical sense is rapidly lost.
When a series of clouded images is to be filled in, the repeated observation on a sin-

gle grid can be exploited to improve the specification of the covariance functions. This
was done in the development of the Data INterpolating Empirical Orthogonal Functions
method (DINEOF) (Beckers and Rixen, 2003; Alvera-Azcárate et al., 2005, 20061),25

1 Alvera-Azcárate, A., Barth, A., Beckers, J. M., and Weisberg, R. H.: Multivariate Recon-
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where the time series of images provided a mean to calculate principal components of
incomplete data as eigenvectors of a covariance matrix, and simultaneously filling in
the missing data. The extension to an EOF decomposition version known as Singular
Spectrum Analysis (e.g., Vautard et al., 1992) was also used to reconstruct time-series
of river discharges (Kondrashov et al., 2005) and tidal gauge data (Bergant et al.,5

2005). The DINEOF interpolation was shown to provide similar results than optimal
interpolation being however incomparably faster. Also DINEOF does not need any a
priori information, contrary to OI in its most widely used form with prescribed covari-
ance functions. The DINEOF method has also been compared to krigging methods
in the framework of computational fluid dynamics and was found to be more accurate10

than the latter for high temperal resolution and not too large data gaps (Gunes et al.,
2006). DINEOF is however up to now hampered by the fact that contrary to OI, no
local error estimates at each grid point can be provided. Only a global error can be
calculated by DINEOF exploiting a cross-validation technique, while OI allows to draw
spatial error maps (e.g., Shen et al., 1998). The present paper aims at closing the gap,15

providing local error maps for DINEOF. As a byproduct, it will be shown how OI can be
combined with DINEOF calculations so that when using covariance matrix estimations
from DINEOF it reduces drastically the calculations needed by standard OI.

The paper is organized as follows. In Sects. 2 and 3 we formulate OI and DINEOF.
We then show in Sect. 4 that a very efficient least-square fit of EOF amplitudes to an20

observed subset of data is equivalent to an OI if the filtered covariance matrix of DI-
NEOF is used as the ad hoc covariance matrix of OI. This result is then used in Sect. 5
to use the statistically derived error estimates of OI as error fields for DINEOF. The
method is then tested on a data set consisting of AVHRR Sea-Surface Temperature
(SST) in the Mediterranean Sea around Corsica (Sect. 6). This section proves the effi-25

ciency of the method and the relevance of the error fields. The conclusions finish with
some suggestions of additional improvements that could be included in the DINEOF

struction of Missing Data in Sea Surface Temperature, Chlorophyll and Wind Satellite Fields, J.
Geophys. Res., submitted, 2006.
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tool.

2 Optimal Interpolation

Optimal Interpolation (e.g., Daley, 1991) aims at minimising the expected error variance
ε2 at a given position r of the interpolated field ϕ compared to the true field ϕt

ε2(r) = [ϕ(r) −ϕt(r)]
2, (1)5

with ϕ̄ being the average of ϕ in a statistical sense, i.e., for repeated realisations. All
fields are considered anomalies so that their averages are zero, and if considered ade-
quate, trends or cycles can be removed prior to any treatment. The linear combination
of the Nd available data di located in ri , i=1, . . . , Nd and grouped into a column vector
d that minimises the expected error variance in location r is given by10

ϕ(r) =
Nd∑
i=1

wi (r) di = wTd = cTD−1d, (2)

where T indicates a transposed matrix or vector and where we define a covariance
matrix D between data points

D = ddT (3)

and the covariance c of all data points with the target field at the point r in which the15

interpolation is calculated:

c = ϕt(r) d. (4)

The expected error variance itself is minimal and has the following value

minε2(r) = ϕt(r)2 − cTD−1c, (5)
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directly providing the error estimates in any desired location r after analysis by Eq. (2).
In order for the method to be applicable, there remains to determine the covariances
involved in the formulation.

In standard OI, decomposing the data di=εi+ϕt(ri ) as the sum of observational
(or representativity) errors and the true field, the covariance matrix D is the sum of5

the observational error-covariance matrix R and the target field-covariance matrix B
assuming observational errors and the target field to be uncorrelated. An element i , j
of B is then given by ϕt(ri )ϕt(rj ) and similarly for the observational error. Introducing
decomposition D=R+B into Eq. (2) leads to the classical optimal interpolation formula

ϕ = cT (B + R)−1 d, (6)10

with c being the covariance between data points and the point of interpolation and B
the field-covariance matrix also called background error matrix containing covariances
between data locations. The latter is generally calculated from predefined correlation
functions depending on the distance between data points (e.g., Emery and Thomson,
1997). For uncorrelated and homogenous data errors of variance µ2, the correspond-15

ing error-covariance matrix has the simplified diagonal form

R = µ2 I, (7)

which is used in most applications and where I is the identity matrix. In the following,
the signal variance is

σ2 =
〈
ϕt(r)2

〉
, (8)20

where <> stands for a spatial average and σ2/µ2 is the signal/noise ratio.
Now suppose we look at a single image and would like to interpolate the missing

data under clouds. The classical approach would be to define a covariance function,
estimate a signal to noise ratio and then apply the OI algorithm. In its original and
statistically optimal form, this would require the inversion of a matrix of size Nd=mp,25
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mp being the number of unclouded or present pixels. This inversion can be quite
time-consuming: a SeaWiFS scene of 1000×2000 pixels with 50% cloud coverage
would require the inversion of a system of 106 equations with 106 unknowns. This is
a major challenge since the matrix to be inversed is not banded. Therefore, optimal
interpolation is in most cases downgraded by using only data points within a given5

distance from the point in which to interpolate.

3 DINEOF

DINEOF, instead of using the direct minimisation of expected error covariance as the
objective of the interpolation, uses data-based principal components (called EOFs
hereafter) to infer the missing data. To do so, we realise that EOFs can be obtained10

from a Singular Value Decomposition (SVD) representation of the data matrix X. Each
column of X contains a satellite image stored as a column vector of m pixels, and a
pixel of such an image is the data xi ,j . We suppose we have n images (j=1, ..., n).
Then the SVD decomposition reads

X = UΣVT, (9)15

where U contains on each of its columns one of the spatial patterns of the EOFs,
the pseudo-diagonal matrix Σ the singular values and V the temporal components.
The SVD decomposition is then truncated to the first N EOFs and provides a filtered
version of the data, also at the missing data points. This provides therefore the inter-
polated values. To calculate EOFs via an SVD, the data matrix needs however to be20

complete; but to infer the missing data we must know the EOFs, a circular dependence
which of course results in an iterative method described in more details in Beckers and
Rixen (2003) and Alvera-Azcárate et al. (2005). The number of EOFs to retain in the
truncation is obtained by a cross-validation technique, adding artificial clouds in some
locations and using as a global error estimate the rms (root mean square) distance25

between the known values and the reconstructed ones under the artificial clouds. The
740
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optimal number of EOFs is then the one that minimises this error estimate. This method
was thorougly tested in Alvera-Azcárate et al. (2005), where a set of 105 images on
the Adriatic Sea was reconstructed and compared to in situ data. The method was nu-
merically optimised using a Lanczos solver for the SVD decomposition (Toumazou and
Cretaux, 2001), which allows to apply the technique to large sets of data. The accuracy5

of the method was checked against a classical OI reconstruction. The error obtained
by DINEOF was smaller than with OI (0.95◦C vs. 2.4◦C using 452 independent in situ
observations for validation) and DINEOF was able to make the reconstruction of the
data set nearly 30 times faster than with OI.

DINEOF provides as result a Singular Value Decomposition of the data matrix10

X=UΣVT where Σ contains the singular values ρi (ordered as usual with decreasing
amplitude) on the diagonal and where U and V are normalized according to

UTU = I, (10)

VTV = I. (11)15

We do however only consider the N first EOFs to be significant so that the truncated
SVD is our best estimate of the field:

XN = UNΣNVNT
, (12)

where UN is a m×N matrix with N columns containing the first N spatial EOFs, VN is
a n×N matrix with N columns containing the first N temporal EOFs and ΣN a diago-20

nal matrix of size N×N containing the first N singular values ρ. The truncated SVD
expansion defines the reconstruction xr

i ,j of the field. Note that if the initial matrix was

complete and contained homogenous noise, we would have
∑n

i=1 ρ
2
i =mn (σ2+µ2) and

N∑
i=1

ρ2
i = mnσ2. (13)
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For the matrix with M missing data, we cannot base the calculation of the noise value
on the singular values, because the reconstruction is only valid for the first N EOFs, but
Eq. (13) remains valid. On the other hand, we have a series of points for which data
are available before reconstruction (where there are no clouds). The noise can thus be
evaluated as the difference between the original values x and the filtered ones xr

5

µ2 =
1

mn −M

∑
xi jnot missing

(
x2
i j − xr

ij
2
)

(14)

using only the original data values xi j and the reconstruction xr
ij in the nm−M not

missing data points.

4 Least-square fits and Optimal Interpolation

We will now use the covariance matrix from the DINEOF decomposition in an Optimal10

Interpolation approach. Instead of using a prescribed covariance matrix for OI, we
can invoke the ergodic theorem and replace statistical averages by time averages if
a sufficiently large amount of images are available. Hence the covariance matrix can
be based on our SVD decomposition and the covariance between each couple of grid
points is now calculated as an average over the n images instead of an infinite statistical15

ensemble2:

D =
1
n
XXT. (15)

This is, however, not a very good estimate of covariance matrix because we only trust
the first N EOFs. If we define scaled spatial EOFs

L =
1
√
n
UNΣN , (16)

20

2Having removed the data mean, the denominator should be n−1 for the estimation of the
covariance matrix, but the final interpolation result is independent of this scaling.
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which is a matrix with N columns, each of which is the spatial EOF scaled by the sin-
gular values and (for convenience) by 1/

√
n. The N retained significant EOFs lead

therefore, exploiting the truncated SVD decomposition and VNT
VN=I, to the field co-

variance

B =
1
n
XNXNT

= LLT, (17)5

since we assumed that the first N EOFs contain signals and the remaining EOFs some
noise. Note that this rejection of higher EOFs is coherent with the fact that to accurately
estimate higher EOFs, very large sample sizes are needed (e.g., North et al., 1982).

As already mentioned, the observation error covariance cannot be determined by
our DINEOF expansion because the higher EOFs are not significant. But if the ex-10

plained variance is well captured by B, we can try to model the observational errors as
being uncorrellated. Knowing the total variance of the data and the reconstructed field
variance, we can estimate the noise. In other words, the observational error variance
µ2 is taken to be the variance not retained within the EOF expansion. Assuming the
observational error uncorrelated we therefore would model15

R = µ2 I, (18)

where µ2 is given by Eq. (14).
Having now R, the covariance matrix of the noise unexplained by the first N EOFs

and the field coviance matrix B, we can use standard OI on a single image to interpo-
late everywhere, including missing points and data covered points. Here we assume20

the points are ordered3 and the first mp grid points are present and the remaining
m−mp=mm are missing. We partition the covariance matrix correspondingly

B =
(

Lp
Lm

)(
LT
p LT

m

)
=

(
LpL

T
p LpL

T
m

LmLT
p LmLT

m

)
, (19)

3This is not a restrictive hypothesis, in practise it amounts to use indirect indexing in matrices
rather than to perform a sorting before application of the method.
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where Lp contains for example the first mp rows of L, i.e., the EOF values at points for
which data are available.

The covariance matrix between data points is then simply

Bp = LpL
T
p . (20)

The row i of5 (
LpL

T
p

LmLT
p

)
(21)

can be written as iTLT
p , where i is column array of dimension N×1 containing the values

of the N scaled EOFs in grid point i (irrespectively if whether or not the data are miss-
ing). We can easily interprete iTLT

p as the covariance cT(ri ) used in OI. The analysis in
point i then provides10

ϕi = iTLT
p
(
Bp + R

)−1
d. (22)

In particular for all points with data, we can construct the vector of the analyzed field
xp:

xp = LpL
T
p
(
Bp + R

)−1
d. (23)

Similarly, for all points of missing data, according to Eq. (2), we must use the covariance15

between data and missing points applied to the
(
Bp+R

)−1
d to calculate

xm = LmLT
p
(
Bp + R

)−1
d. (24)

We see that we can calculate the analyzed field in all points written in a compact form
4:

x =
(

Lp
Lm

)
LT
p

(
LpL

T
p + µ2 Ip

)−1
d = LLT

p

(
LpL

T
p + µ2 Ip

)−1
d. (25)

20

4The reader used to data assimilation can recognise the analysis x=BHT
(
HBHT+R

)−1
d

where H is the observation matrix, here containing only a mask of zeros and ones.
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Now, assuming the inverse matrix involved in the calculation exists and because of
Eq. (A2) from the appendix, this is equivalent to

x = L
(
LT
pLp + µ2 IN

)−1
LT
pd. (26)

We will now show that this is nothing else than a regularised least-square fit to the N
first EOFs trying to find the N components of amplitude column vector a so that x=La.5

Indeed, minimizing the distance of the data points to the linear combination of scaled
EOFs by solving the (in general overdetermined) problem

Lpa = d (27)

is a classical problem (e.g., Lawson and Hanson, 1974) and its regularised solution is

a =
(
LT
pLp + µ2 IN

)−1
LT
pd. (28)10

This leads directly to Eq. (26) when the reconstruction uses the weights a to combine
EOFs everywhere. Hence this is equivalent to OI. The major advantage of Eq. (26)
compared to OI is its reduced calculation cost. The matrix inversion asks for N3 op-
erations in the least-square fit and m3

p in standard OI (typically N=20 while mp=106

for satellite images). The construction of the matrix to invert is proportional to mpN
2

15

for the least-square fit and the remaining matrix multiplications ask for mN operations.
Since m,mp�N the dominant cost is mpN

2, several orders of magnitude smaller than

m3
p for a standard OI.
The gain is due to the fact that we can factorize the data-based covariance matrix be-

cause of the SVD decomposition found by DINEOF. Using covariance matrixes based20

only available data (Boyd et al., 1994; Kaplan et al., 1997; von Storch and Zwiers, 1999;
Eslinger et al., 1989) or prescribed covariance functions leads to a full matrix B and
the need to invert the mp×mp matrix.
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Error subspace based Kalman filters such as the Reduced Rank Square Root Filter
(Verlaan and Heemink, 1997), the Singular Evolutive Extended Kalman filter (Pham
et al., 1998) and the Ensemble Square Root Kalman Filter (Evensen, 2004) use an
equivalent approach. Since the model error covariance can be decomposed in a sim-
ilar way as Eq. (17), the analysis in those filters are performed in the low-dimensional5

error subspace instead of the space containing the observation space.

In practise, in order to construct the matrix to invert, there is no need to partition the
matrixes into missing and non-missing data points: it is sufficient to use the EOF values
only where data are present. The product LT

pLp is for example simply obtained by cre-10

ating an N×N matrix using L with a mask of zeros in missing data points. Even simpler,
in the loops which perform the product LTL, the use of a simple flag indicating miss-
ing data allows to disregard the corresponding contributions and a direct calculation of
LT
pLp.

5 Error fields15

In Alvera-Azcárate et al. (2005) we observed that the least-square fit approach and
DINEOF are very close in terms of results. Hence we can use the error-estimates of
OI as a proxy for the error-fields of DINEOF, with a subsequent a posteriori verification
that the difference between OI and DINEOF reconstruction are smaller than those error
fields. To calculate the error field, we would rather like to apply a method similar to the20

least-square fit instead of an equivalent standard OI error calculation because of the
dramatically different problem size. In OI, the error in a given point can be assessed
by the analysis of the covariance between this point and data points, see Eq. (5). For
a grid point i (located in ri ), this is normally performed as

ε2 = ϕt(ri)2 − iTLT
p

(
LpL

T
p + µ2Ip

)−1
Lpi, (29)25
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but we prefer the equivalent form,

ε2 = ϕt(ri)2 − iT
(
LT
pLp + µ2IN

)−1
LT
pLpi, (30)

leading to a much smaller matrix to be inverted. The local field variance can be esti-
mated as the diagonal component i of B which is nothing else than

ϕt(ri)2 = iTi. (31)5

Then, all we have to do is to calculate once and for all for a given image

C = I −
(
LT
pLp + µ2IN

)−1
LT
pLp = µ2

(
LT
pLp + µ2IN

)−1
. (32)

To calculate C, we need to invert a matrix of the rather small size N×N and from there
we calculate the error variance in each grid point as the quadratic form

ε2 = iTCi, (33)10

demanding mN2 operations to form the matrix products in C and N3 operations to invert
as before. If for some reason, the square root of the covariance matrix is needed, we
can use the eigenvector (or SVD) decomposition,

LT
pLp = WT

pΛpWp, (34)

with WT
pWp=IN and Λp a N×N diagonal matrix, which leads to the following expression15

of C:

C = µ2WT
p

(
Λp + µ2IN

)−1
Wp. (35)

The square root matrix C1/2 defined as

C = C1/2
(
C1/2

)T
(36)
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is therefore:

C1/2 = µWT
p

(
Λp + µ2IN

)−1/2
. (37)

Note that the matrix expression in brackets is a diagonal matrix and its square root in-
volves only the square root of its diagonal elements. Because LT

pLp is of size N×N, the
SVD decomposition and subsequent calculation of the square root of C is essentially5

an inexpensive operation compared to the analysis.
One could also calculate the error-covariance matrix E of the analysis, from which

the local error field is retrieved along the diagonal:

E = LCLT = µ2L
(
LT
pLp + µ2IN

)−1
LT = SST, (38)

where S=LC1/2 has only N columns and allows therefore an efficient storage and ma-10

nipulation of the information contained in E.
To have an idea of amplitude of the analysis error, we can scale the involved matrices

on the following ground: The inner matrix to invert involves the grid points with data
and is in fact a covariance matrix between EOF modes (on average over the points
with data). Since on statistical average the EOFs are independent if all m points are15

available, the matrix behaves as a diagonal matrix of size N depending on the singular
values ρi . If only mp points are present, instead of having a vector product of full EOFs
(that would have a unit norm by construction), the product Eq. (10) over mp points
scales as mp/m . Therefore using Eq. (16) we have

LT
pLp ∼

mp

m
1
n
ΣNΣN . (39)20

Two extreme situations are worth analysing

– If the noise is relatively small (compared to the variance of the data) we have

C ∼ µ2 (LT
pLp
)−1

, (40)
748

http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/3/735/2006/osd-3-735-2006-print.pdf
http://www.ocean-sci-discuss.net/3/735/2006/osd-3-735-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


OSD
3, 735–776, 2006

Cloud filling and
error calculations

J.-M. Beckers et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

so that the error covariance matrix after the objective analysis with low noise
behaves as

E ∼ µ2L
(
LT
pLp
)−1

LT. (41)

Formally we use a pseudo-inverse should the inversion become singular. Using
the definition (16), this leads to5

E = µ2 1
n
UNΣN (LT

pLp
)−1

ΣNUNT ∼ µ2 m
mp

UNUNT
. (42)

The average error over the grid is the trace tr(E) of the covariance matrix divided
by the number of grid points m. Using the orthormality of the EOFs, this leads to

ε̄2 ∼ µ2 N
mp

. (43)

In other words, the average expected error is the noise reduced by the factor10

depending on the EOF expansion and data points used. This is probably an
overoptimistic finding, because in reality errors on the data are not independent
and instead of mp, there should appear the number of data with uncorrelated
errors. We will come back to this issue later. From this analysis, we found that in
the case of low observational errors, the expected error of the reconstruction is15

inversely proportional to the number of EOF chosen. This number characterizes
the degrees of freedom in the system. Therefore, the less degrees of freedom a
system has, the easier is it to reconstruct missing points from data in unclouded
points.

– At the other extreme, for very large noise20

E = L

(
I +

1

µ2
LT
pLp

)−1

LT ∼ L

(
I − 1

µ2
LT
pLp

)
LT (44)
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which using the same reasoning yields

E =
1
n
UNΣNΣNUNT −

mp

mn2

1

µ2
UN
(
ΣN
)4

UNT
. (45)

Taking the trace divided by m we recover an average error. The first term contains
the first N squared singular values, that we can immediately relate to σ2. The
second term contains singular values to the fourth power. If we assume that the5

first N values are similar (and thus related to σ) we get

ε̄2 ∼ σ2

(
1 − σ2

µ2

mp

N

)
. (46)

Here, because of the large noise, the relative error is of the order of 1, as should be
expected.

In both asymptotic cases the factor µ2N/(mpσ
2) appears, which can be interpreted10

as the ratio of observational errors (µ2IN ) versus the background error captured by the
EOFs (Lp

TLp) and hence the relative weights in the analysis step:

tr
(
µ2IN

)
tr
(
LT
pLp
) ∼ µ2N

σ2mp
(47)

In this last equation we used Eq. (39) and that the sum of the leading N eigenvalues is
nmσ2.15

In summary

– For small µ

ε̄2

σ2
∼ µ2

σ2

N
mp

. (48)
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– For large µ

ε̄2

σ2
∼ 1 − σ2

µ2

mp

N
. (49)

In any case, we are now in a position to calculate error estimates in each grid point
according to Eq. (33), with a total cost that is proportional to mN2, both for the con-
struction of C and the error calculation. As before, in practice, the calculation of C5

can be done by adequate flagging of operations during matrix multiplications instead
of preliminary partitionning. In summary, we calculate first the DINEOF decomposition,
then an extremely fast objective analysis of each image based on a reformulation into
a small least-square fit problem using the DINEOF based covariance matrixes, and
finally we can generate the OI error map of each image at almost no additional cost10

compared to the analysis itself.
In addition to the error fields, the error-covariance matrix can also be calculated, par-

ticularly efficiently when the square root of C is calculated. The SST error covariance
is for example a necessary information for the calculation of the uncertainty of spatial
averages, such as the estimation of the ocean surface heat content. This application15

can benefit of the DINEOF cloud free SST to integrate over the entire domain. But
the estimation of the error variance of the total heat content not only necessitates the
error variance but also the error covariance since the error tends to be correlated in
space. If φ̄= 1

m

∑
i xi is the spatial average value of the analysed field, the associated

error-variance e2 is indeed20

e2 =
1

m2

∑
i j

Ei ,j (50)

where Ei ,j are the covariances found in the error-covariance matrix E of the analysis.
Note that when the errors are homogenous and uncorrelated, the error-variance of the
mean is the local error divided by the number of data points.
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We have however still to prove that the use of covariance matrixes based on DINEOF
leads to physically acceptable results. To do so, we will now test the method on a large
data set of SST.

6 Application to sea surface temperature around the Corsican Island

The method will now be tested in the Mediterranean Sea around Corsica. The circula-5

tion in the Ligurian Sea describes a cyclonic gyre, which is more intense in winter and
is mainly due to curl of the wind stress (Larnicol et al., 1995). Two northward currents
surrounding the coast of Corsica, the West Corsican Current (WCC) and the East Cor-
sican Current (ECC), join in the Ligurian Sea and form the Northern Current (NC). The
NC seasonal cycle is modulated by variations in volume and heat content of the ECC10

and WCC, and presents its highest transport values in winter (Vignudelli et al., 2003).
It has been shown (Orfila et al., 2005) that the seasonal cycle on the Ligurian Sea is
linked to the North Atlantic Oscillation, which can affect the strength of the winter sea-
son. The NC is mainly formed by warm modified Atlantic water, which is separated from
the colder central basin by the Liguro-Provençal front. The NC flows south-westward15

following the French and the Spanish coasts along the continental slope. The signal of
the NC extends from the north of Corsica to as far as the Catalan Sea (e.g., Astraldi
et al., 1999; Millot, 1999). The main characteristics of the circulation in the Ligurian Sea
can be seen in Fig. 1. In the Tyrrhenian Sea, east of Corsica and Sardinia, the oro-
graphic effect of the two islands induces a windstress that is responsible for a general20

cooling east of the Bonifacio strait between the Islands (e.g., Millot and Taupier-Letage,
2005).

6.1 Description of the data set

AVHRR Pathfinder version 5 SST data from 1 January 1995 to 31 December 2004
have been taken from the Jet Propulsion Laboratory web site (ftp://podaac.jpl.nasa.25
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gov). The data are daily averaged SST maps, and only nighttime passes are used
in this study, to avoid daytime surface heating. A region covering the waters around
the Corsican island, in the northwestern Mediterranean Sea has been chosen (see
Fig. 1). Only images containing at least 5% of valid data are retained, with a maximum
of m=5995 data points for a cloud-free image, each data point representing a grid box5

of 4 km×4 km. From the initial 3653 images, n=2640 are retained using this criteria
(about 72% of the initial data). The mean cloud coverage of this data set is 55.2%. The
time and space average of the SST data has been substracted from the observations.

6.2 SST estimation

This 10-year record of SST data has been reconstructed using DINEOF. For the cross-10

validation, a set of initially present points is set aside and considered as missing. The
reconstruction of these points is then compared to their initial value, to establish the
error of the reconstruction. Usually, the cross-validation points are chosen randomly
from the whole data set, but in this work we used clusters of points with a shape of real
clouds extracted from the initial cloudy data set. These points represent more realisti-15

cally the missing data, so the error of their reconstruction reflects more accurately the
actual error of the reconstruction. We randomly chose clouds from the data set and add
them to the 50 cleanest images, to be sure that the data masked were initially present.
About 4.4% of the initially present data were masked in this way, and this 4.4% of data
were used in the cross-validation to find the number of optimal EOFs minimising the20

error of the reconstruction.
The lowest error, 0.42◦C, was obtained by using the N=11 leading EOFs. We found

that the optimal number of EOFs for the reconstruction is sensitive to the distribution
of the chosen cross-validation points. The larger the regions obscured by the clouds
is, the less EOFs are used for the reconstruction. This indicated that only certain EOF25

modes with sufficiently large scale features can be reliably reconstructed, while high-
order EOF (representing small scales) cannot be estimated given the typical cloud size
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in the Ligurian Sea.

6.3 Error estimation

Equation (14) allows us to estimate the error variance from the variance filtered by
the EOF reconstruction. First experiments revealed that the spatial error correlation
of the SST observations could not be neglected and should be translated into a non-5

diagonal matrix R. However such a non-diagonal error-covariance matrix R would
require the inversion of a mp×mp matrix. This matrix tends also to be more and more
ill-conditioned if the correlation length is large. Computations with non-diagonal error
covariance R are thus numerically prohibitive. In addition, it is not always clear how
to specify off-diagonal terms. One straightforward way to circumvent this problem is10

to sub-sample the data such that the observations can be considered as independent.
Another method is to retain the full observations data set, but to decrease the “weight”
(i.e. increase the error variance) of the observations. It can be shown (e.g., Barth
et al., 2006), that the error variance must be multiplied by the number r of redundant
(or strongly correlated) observations:15

R = rµ2 I. (51)

For a two-dimensional dataset, the factor r can be estimated by:

r ∼ L2

∆x∆y
(52)

where L is the correlation length of the observational error and ∆x and ∆y are the
zonal and meridional resolution, respectively.20

If we replace µ2 by rµ2 in the asymptotic case for low noise we have

ε̄2 ∼ µ2 NL2

mp∆x∆y
∼ µ2NL2

S
(53)
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where the surface S represents the observed area of the domain. S divided by L2 is
the number of really independent data used and it can be interpreted as the observed
degrees of freedom or the number of EOF modes constrained by the observations
at a particular time instance. The ratio N/(S/L2) is thus a measure on how well the
N EOFs could be captured by the S/L2 independed scalars present in the data set.5

Consequently the more EOF modes are constrained, the smaller the average error will
be.

It remains to determine the adequate value of r . Two approaches were tested. From
the DINEOF cross-validation we already know that the error of the reconstruction of
initially-missing points is 0.42◦C. We used this information to calibrate the correlation10

length L (or equivalently the parameter r). Different length scales L were used until the
error fields from the analysis gave on average a value of 0.42◦C under clouded regions.

Here we see how the square root matrix of C could be of interest. Indeed, a change of
µ2 during the calibration process solely modifies the diagonal matrix, all other parts re-
maining unchanged. Hence the calculation of the error fields for another µ is extremely15

fast. From this procedure we obtained a correlation length for the observational error
of 66 km and a parameter r=276.

In the second approach, a method similar to the cross-validation in DINEOF is used:
using the same artificial clouds as for the cross-validation in DINEOF, the parameter r
is calibrated until the difference between the optimally interpolated values under these20

artificial clouds is as close as possible to the observed ones. Note that for this approach
we use a covariance matrix of DINEOF calculated also disregarding the same data
points in order to be consistent with the DINEOF cross-validation. With this second
approach, a value for the correlation length of the observational error of 29 km is found.

The question arises which from the two approaches is the more realistic one. A25

possible criteria is a comparison with the correlation length of the SST anomalies,
which should be larger than the correlation length of the observational error just found.
Independently from the cross-validation error, we estimated the correlation function
of the SST anomalies directly from the available data, where their spatial mean has
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been subtracted. This correlation function is shown in Fig. 2. The correlation length
scale of the SST defined by the correlation threshold of e−1∼0.37 is 80 km (the chosen

threshold is based on correlation function of the type e−d/L where d is the distance).
This is in agreement with both error length scales, since we can expect that the SST
length scale is larger (but of the same magnitude) than the SST error length scale.5

Both calibration methods for the correlation length of the observational error are
thus not incoherent with the correlation length of the signal. Since in addition the
analysed fields are very similar for both values and the error fields are not fundamentaly
different (compare panels (c) and (d) of Fig. 3 with panels (a) and (b) of Fig. 4), no
further optimisation seems necessary. Hence we present the results from the second10

approach, based on the analysis error minimisation and leading to a clearer separation
of the scales of noise (29 km) and signals (80 km). Note that the internal radius of
deformation has a value of 4–7 km during winter in this region (e.g., Barth et al., 2005)
leading to an associated wavelength of the order of 25–44 km. The meanders of the
Northern current exhibit a typical length scale of 30 km to 60 km (e.g., Sammari et al.,15

1995).
In order to confirm the validity of our approach consisting in taking the error fields

from OI as error fields for DINEOF, the RMS difference between SST estimations from
OI and DINEOF should be smaller than this error estimation. The RMS difference
between both fields is 0.17◦C and indeed smaller than the average error:20 √√√√ 1

mn

m∑
i=1

n∑
j=1

ε2
i j = 0.24◦C. (54)

We also computed the difference between DINEOF SST (xr ) and the OI SST (xr,(OI))
scaled by the error estimation:

yi j =

(
xr
ij − xr,(OI)

i j

)2

ε2
i j

. (55)
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In 93% of the data points the scaled difference is lower than 1. This means that for the
vast majority of the data points, the difference between both reconstructions is smaller
than the error estimation. However, this analysis takes only the error variance into
account. The error estimation method also provides the error covariance. This enables
us to establish the significance of the difference between reconstructions knowing the5

spatial correlation of the error. We assume that both reconstructions are a realisation
of the Gaussian distributed random variable with possibly different means but the same
covariances, i.e. the error covariance E given in Eq. (38):

xrj ∼ N (mr
j ,Ej ), (56)

xOIj ∼ N (mOI
j ,Ej ), (57)10

where j is the temporal index for the image under consideration. The difference also
follows a Gaussian distribution:

dj = xrj − xOIj ∼ N (mr
j − mOI

j ,2Ej ). (58)

In order to transform this distribution into a normal one, we introduce the matrix S̃:

S̃ =

√
n
2
C−1/2ΣN−1

UNT
, (59)

15

which transforms the covariance matrix of the difference dj into the identity matrix:

S̃Ej S̃
T
=

1
2
IN . (60)

The transformed variable follows therefore:

zj = S̃dj ∼ N (S̃(mr
j − mOI

j ), IN ). (61)

We will examine if the difference between both reconstructions is significant to reject20

the null-hypothesis (H0):

mr
j = mOI

j . (62)
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In this case we would accept the alternative hypothesis H1:

mr
j 6= mOI

j . (63)

Under the null-hypothesis, the transformed variable z follows a normal distribution.

zj ∼ N (0, IN ). (64)

Now we can test if our sample zj has a mean significantly different from zero. We5

compute the average of zj over all EOF modes and over time, z. This mean is smaller
than the critical zα/2 value used in a two-sided z-test for α=0.05.

|z|
√
Nn = 0.93 < zα/2 = 1.96 . (65)

This statistical test shows that the averaged difference between the OI reconstruction
and the DINEOF reconstruction are not sufficiently large to be statistically significant.10

The previous test measured the magnitude of the bias. We can also perform a test
based on the L2-norm. Under the null-hypothesis the sum of the squared zi j follow

a χ2-distribution with Nn=29 040 degrees of freedom. If this sum exceeds the critical
value of 28 644, then the null-hypothesis must be rejected. But in our case, this value
is again below this threshold:15 ∑
i ,j

z2
i j = 3703 < 28 644 . (66)

where the z-values are summed over time and over EOF modes. Both tests show
that the null-hypothesis cannot be rejected. This does not prove, however, that the
hypothesis H0 is true. If there is any difference in the reconstructions mr

j and mOI
j , then

the difference is so small that it could not be detected by the current sample. But the20

fact that we are using a large sample of 2640 images (corresponding to 10 years of
data) gives us confidence that if there is any difference between both reconstructions,
it must be small. Therefore we conclude that the OI reconstruction and the DINEOF
reconstruction are sufficiently close for the OI-derived estimation to be also a valid error
estimation for the DINEOF reconstruction.25
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6.4 Results

As an example of the reconstruction, Fig. 3 shows a SST snapshot on 15 November
1998 (panel a). The central part of the Ligurian Sea and a fraction of the Tyrrhenian Sea
are present in the observed SST. As one would expect, the estimated error standard
deviation is the lowest in those regions. The error increases gradually and is highest5

far away from the existing observations. Although the background error covariance
is defined by global EOF modes and does therefore not include an explicit correlation
length scale, the presented error estimation method was able to quantify the local effect
of clouds on the error variance.

East of Corsica (approximatively at 42◦ N and 9◦30′ E) the error estimation is rela-10

tively high despite the presence of observations nearby. The SST standard deviation
over the studied time period (Fig. 5) is particularly high in this region. During summer
this zone is warmer than e.g. the west coast of Corsica. The shallower depth of the east
coast of Corsica shields this zone from the large-scale ocean current. This example
shows that the error estimation takes also the variability of the field into account.15

Although the Northern Current is covered by clouds in this snapshot, its SST signa-
ture has been reconstructed by DINEOF (panel b) and the OI method (panel c) using
the error covariance the EOFs computed by DINEOF. It is unlikely that an OI method
using an isotropic and homogeneous error covariance would be capable of reconstruct-
ing the Northern Current in a situation where very few data are available. To test this20

possibility, we have made a comparison between the DINEOF reconstruction and an
isotropic OI reconstruction on 30 December 2003. The cloudiness at and around this
date is especially high, with some days with no data at all, which makes it appropriate
for our purposes. Using a time window of 5 days, observations from the 26 December
2003, 27 December 2003, 30 December 2003 and 4 January 2004 are available for the25

OI reconstruction, shown in Fig. 6. These four days present a mean cloud coverage of
76.7%. For the OI reconstruction, a spatial correlation length of 80 km (consistent with
the correlation length for the Ligurian Sea found in Sect. 6.3) and a temporal correlation
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length of 3 days are used.
The OI reconstruction (Fig. 7) is degraded by the data on 26 December 2003, mostly

in the western part of the Ligurian Sea. This image is the only one that presents
a good data coverage, but the time difference between this image and the analised
image is 5 days, and the SST on 30 December is notably colder than on 26 December.5

The DINEOF reconstruction on 30 December 2003 (Fig. 8) presents smoother values
and a more realistic SST distribution on the western and northern Ligurian Sea. Both
analysis are similar east of the Corsican island, in the Thyrrenian Sea, where most
data are available. This example shows the ability of the global DINEOF analysis to
produce better results than a standard isotropic OI reconstruction when only a few SST10

observations are present. The EOF-based OI reconstruction on this date is similar to
the reconstruction of Fig. 8 (image not shown).

6.5 Inter-annual variability

As an example of the DINEOF’s application we assess if the accuracy of the recon-
structed SST is sufficient to study inter-annual variability of the spatial averaged sea15

surface temperature.
The average seasonal cycle has been computed from the reconstructed SST using

all data from 1995 to 2005 filtered with 15-days cut-off low pass filter (Fig. 9). The
seasonal cycle shows an asymmetric behavior: while the mean temperature remains
almost constant at the minimum temperature during January to March, the maximum20

temperature is only reached during a short period of time during August. The deviations
from this seasonal cycle are shown in Fig. 10. The heatwave of 2003 affecting south
Europe, in particular France, can be clearly seen from this time series. The error of the
spatial mean SST (Fig. 11) has been computed from Eq. (50). Since we can assume
that the error of the seasonal cycle is negligible, the error estimate represents also the25

expected error of the temperature anomaly of Fig. 10. The expected error of the mean
SST based on DINEOF is thus more than two orders of magnitude smaller than the
inter-annual signal in SST of our studied domain. The reconstructed SST is therefore
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suitable to study inter-annual SST variability.
The expected error is highly variable in time, but the low-passed error estimate (cut-

off frequency of 15 days) reveals a seasonal cycle in the error estimation. The re-
construction has the highest error in winter and is about 25 % more accurate during
summer. The seasonality of the error estimation is due to the cloud coverage. The5

unfiltered error estimation correlates to 0.85 with the fraction of missing data. The cor-
relation between the filtered error estimation and the filtered fraction of missing data is
0.92.

If we had taken the simple approach to calculate the mean temperature using only
available data, we would have obtained another time-series. The difference between10

the anomaly of the latter (compared to the same seasonal cycle) and our estimate
of Fig. 10 has an rms value of 0.22◦C, much higher than the error estimate found
in Fig. 11. Note that if we had also taken only the available data to calculate the
confidence interval for the mean for the simple approach, we would have found an
expected error on the mean of 0.012◦C. This is much lower than the actual error of15

the simple estimate and yet higher than the error we get on the DINEOF analysis of
the mean. Clearly, the DINEOF approach provides better estimates of the mean and
narrower associated error bars.

7 Conclusions

We presented a method that allows to complement the cloud filling method DINEOF20

with local error estimates. The approach uses the error estimates from optimal interpo-
lation (OI), itself exploiting the covariance fields provided by DINEOF. Because of the
factorisation of the covariance matrix also provided by DINEOF, OI can be performed
as a least-square fit of EOF amplitudes, which drastically reduces computational re-
quirements. The same approach can be exploited during the error calculations.25

In the present paper we applied the method to the reconstruction of SST fields in the
region around Corsican Island, including the calculation of the interannual variability of
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the spatial means. It was shown that this approach allowed the isolation of interannual
variability with very small error bars.

In the present case, the difference between the analysis provided by OI and DINEOF
was shown to be smaller than the error fields, justifying the use of the error field for both
analyses.5

Should the difference be too large in some applications, the present method still
allows to provide error estimates, but only for the OI. The latter, however, still benefits
from the covariance factorization of DINEOF.

Another possibility would be to adapt DINEOF so as to include OI in the iterations,
using the covariance from the EOFs under calculation, as the method of estimating10

missing values. Such a hybrid approach would lead to a coherent set of EOFs, co-
variance matrix and error fields. This approach was not yet implemented because in
the cases we tested, the difference between OI and DINEOF were too small to justify
the additional complexification. Probably a more important point to analyze for further
improvement is the inherent hypothesis of the method that cloud coverage is uncorre-15

lated with the interpolated field. This can probably be justified for SST when clouds are
not persistent but it is already more questionable for Chlorophyll which reacts rapidly
to changes in insolation or storms associated with clouds. In this case, additional in-
formation from scatterometers and in situ could probably help improve the detection of
patterns of variability in a multivariate approach.20
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Appendix A

Useful matrix identities

– (
A + UVT

)-1
= A-1 − A-1U

(
I + VTA-1U

)-1
VTA-1 (A1)5

–

LT
(
LLT + µ2I

)-1
=
(
LTL + µ2I

)-1
LT (A2)

provided the inverse matrix exists and I is an identity matrix (with 1 on the diagonal) of
appropriate dimension.
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Fig. 1. Zone of interest around the Corsican island in the Northwestern Mediterranean Sea.
The Northern Current (NC), flowing southwestward is formed by the Western Corsican Current
(WCC) and the Eastern Corsican Current (ECC). Strong frontal regions are associated with
these currents.

766

http://www.ocean-sci-discuss.net
http://www.ocean-sci-discuss.net/3/735/2006/osd-3-735-2006-print.pdf
http://www.ocean-sci-discuss.net/3/735/2006/osd-3-735-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


OSD
3, 735–776, 2006

Cloud filling and
error calculations

J.-M. Beckers et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

0 50 100 150 200 250
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Distance in km

C
or

re
la

tio
n

Fig. 2. Spatial SST correlation as a function of distance.
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Fig. 3. Panel (a) is the observed SST on 15 November 1998. Panels (b) and (c) show
the reconstruction by DINEOF and by optimal interpolation based on the same EOFs and a
correlation length of 29 km. The estimated error standard deviation for the reconstruction is
shown in panel (d).
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Fig. 4. Panel (a) SST on 15 November 1998 reconstructed by optimal interpolation using
the same EOFs than DINEOF and a correlation length of 66 km. The estimated error standard
deviation for this reconstruction is shown in panel (b).
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Fig. 6. Data used in the OI reconstruction of 30 December 2003. The colorbar is the same as
in Fig. 7.
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Fig. 7. Reconstruction of the SST on 30 December 2003 by Optimal Interpolation.
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Fig. 8. Reconstruction of the SST on 30 December 2003 by DINEOF.
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Fig. 9. Seasonal cycle of the spatially averaged SST using reconstructed SST from 1995 and
2005 and filtered with 15-days cut-off low pass filter.
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Fig. 10. Mean SST anomalies and filtered mean SST anomalies (15-days cut-off frequencies).
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Fig. 11. Error estimate of mean SST and filtered error estimate (15-days cut-off frequencies).
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